Laminin activates CaMK-II to stabilize nascent embryonic axons.

نویسندگان

  • Charles A Easley
  • Milton O Faison
  • Therese L Kirsch
  • Jocelyn A Lee
  • Matthew E Seward
  • Robert M Tombes
چکیده

In neurons, the interaction of laminin with its receptor, beta1 integrin, is accompanied by an increase in cytosolic Ca2+. Neuronal behavior is influenced by CaMK-II, the type II Ca2+/calmodulin-dependent protein kinase, which is enriched in axons of mouse embryonic neurons. In this study, we sought to determine whether CaMK-II is activated by laminin, and if so, how CaMK-II influences axonal growth and stability. Axons grew up to 200 microm within 1 day of plating P19 embryoid bodies on laminin-1 (EHS laminin). Activated CaMK-II was found enriched along the axon and in the growth cone as detected using a phospho-Thr(287) specific CaMK-II antibody. beta1 integrin was found in a similar pattern along the axon and in the growth cone. Direct inhibition of CaMK-II in 1-day-old neurons immediately froze growth cone dynamics, disorganized F-actin and ultimately led to axon retraction. Collapsed axonal remnants exhibited diminished phospho-CaMK-II levels. Treatment of 1-day neurons with a beta1 integrin-blocking antibody (CD29) also reduced axon length and phospho-CaMK-II levels and, like CaMK-II inhibitors, decreased CaMK-II activation. Among several CaMK-II variants detected in these cultures, the 52-kDa delta variant preferentially associated with actin and beta 3 tubulin as determined by reciprocal immunoprecipitation. Our findings indicate that persistent activation of delta CaMK-II by laminin stabilizes nascent embryonic axons through its influence on the actin cytoskeleton.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Axonal localization of delta Ca2+/calmodulin-dependent protein kinase II in developing P19 neurons.

Ca(2+)/calmodulin-dependent protein kinase, type II (CaMK-II) is an enzyme encoded by four genes (alpha, beta, gamma and delta) and traditionally associated with synaptic function in the adult central nervous system, but also believed to play a role during neuronal development. P19 mouse embryonic cells are a model system for neurogenesis and primarily express isozymes of delta CaMK-II. It is n...

متن کامل

Retinal ganglion cell axons recognize specific guidance cues present in the deafferented adult rat superior colliculus.

During development, retinal ganglion cell axons establish a topographically ordered projection from the retina to the superior colliculus (SC). The putative guidance activities for retinal axons that operate during embryonic development are not detectable in the normal adult SC. However, these cues reappear upon transection of the optic nerve of adult rats. In the present study, we used a modif...

متن کامل

The activation of membrane targeted CaMK-II in the zebrafish Kupffer's vesicle is required for left-right asymmetry.

Intracellular calcium ion (Ca(2+)) elevation on the left side of the mouse embryonic node or zebrafish Kupffer's vesicle (KV) is the earliest asymmetric molecular event that is functionally linked to lateral organ placement in these species. In this study, Ca(2+)/CaM-dependent protein kinase (CaMK-II) is identified as a necessary target of this Ca(2+) elevation in zebrafish embryos. CaMK-II is ...

متن کامل

Effect of Local Administration of Laminin and Fibronectin with Chitosan Conduit on Peripheral Nerve Regeneration: A Rat Sciatic Nerve Transection Model

Objective-Effect of local administration of laminin and fibronectin on nerve regeneration was assessed. Design- Experimental study. Animal- Sixty male Wistar rats. Procedures- The animals were divided into four experimental groups (n=15), randomly: In transected group left sciatic nerve was transected and stumps were fixed in adjacent muscle. In treatment group (CHIT/LF) the defect was bridg...

متن کامل

Adult NG2+ cells are permissive to neurite outgrowth and stabilize sensory axons during macrophage-induced axonal dieback after spinal cord injury.

We previously demonstrated that activated ED1+ macrophages induce extensive axonal dieback of dystrophic sensory axons in vivo and in vitro. Interestingly, after spinal cord injury, the regenerating front of axons is typically found in areas rich in ED1+ cells, but devoid of reactive astrocyte processes. These observations suggested that another cell type must be present in these areas to count...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain research

دوره 1092 1  شماره 

صفحات  -

تاریخ انتشار 2006